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Abstract
This project investigates the inverse problem for linear systems as it poses an important aspect in real life applications such as medical imaging, astronomy,
and geophysics. We attempt to find the unknown coefficients of a linear system, given a noisy observation on the solution of the linear system. The
unknown coefficients are assumed to be dependent on a parameter which is in a prior probability space. The noise follows a probability distribution. We
aim to find the posterior probability of the unknown given a set of observation using the Bayesian framework.

Definition (Bayesian Framework)

Let U be a parameter space and Rn be the data space. The relationship
of U and Rn is defined as

G : U ÝÑ Rn

where G is the observation operator. In the practical settings, the observa-
tional data usually suffers from noise, η. The Bayesian framework express
the problem with the following model

δ “ Gpuq ` η (1)

With equation (1), we aim to solve u given the observational data, δ.
Hence, Bayesian approach is adopted by assuming that u and η follows
some probability space respectively. The problem is then reduced to finding
the posterior probability of u given δ.

Ppu|δq9Ppδ|uqPpuq

If Gpuq in (1) is continuous, then the posterior measure and the prior
measure is related according to the Radon-Nikodym derivative.

dρδ
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where Φpu; δq is the Bayesian Potential.

Linear System
Defined the Linear System, we can convert the Linear Inverse Problem
with respect to the Bayes Rule

~x “ A´1p~uq~b` η (2)

Linear System

Let A be a n ˆ n real matrix. Let ~x be the solution set of the set of
variables of the linear equations and ~b be a given data. We consider the
Linear System as such

A~x “ ~b

We assume that A is a symmetric positive definite matrix and is dependent
on a parameter u that follows a prior probability space. Observation on
the solution ~x, contains noise, η which follows a Gaussian distribution,
η „ N p0, Σq where Σ is a symmetric positive definite matrix.

Linear Inverse Problem
Assume that A can be represented as

Ap~uq “ A0p~uq `
ÿ

iPN
Aip~uq

for ~u P U “
Ś

iPNr´1, 1s. Linear System: Given ~b and ~x ` η, find the
posterior probability of the unknown parameter u in terms of the Radon-
Nikodym derivative
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Well-posedness of Linear Inverse Problem
Define the Hellinger metric

H2pρ~x, ρ
~x1

q “
1

2

ż

U

¨

˝

d

dρ~x

dρ
´

d

dρ~x1

dρ

˛

‚

2

dρpuq

Along with (3), we have

H2pρ~x, ρ
~x1

q9
1

2

ż

U

„

expp´
1

2

∥∥∥~x´A´1puq~b
∥∥∥2

Σ
q´

exp

ˆ

´
1

2

∥∥∥~x1 ´A´1puq~b
∥∥∥2

Σ

˙2

dρpuq

With some algebraic manipulations, and the idea of diagonalisation of A,
we get

Hpρ~x, ρ~x1

q ď C
∥∥∥~x´ ~x1

∥∥∥
Σ

Error Bounding
Truncating the sums so that it can be used to approximate it into the
finite-dimensional settings for easy computation. We have AJ “ A0 `
řJ
i“1 uiAi. We will show the error bound, with Hellinger distance between

the approximated posterior and true posterior measures for a fixed vector
~x. Working with the assumption that

∥∥Ap~uq ´AJp~uq∥∥
8
ď CJ´q for some

q ą 0, we can show that

Hpρ~x, ρ~x,Jq ď CJ´q

Central Theorem
Bayes theorem is defined as follows

Ppu|δq9Ppδ|uqPpuq

where

1. Ppu|δq is the posterior measure of u given δ

2. Ppδ|uq is the likelihood function of δ given u

3. Ppuq is the prior measure with respect to u

The Approach

All this under the uniform distribution, U “
Ś

iPNr´1, 1s
1. Show that the inverse problem is well-posed by using continuity prop-

erties of the posterior measure of u via the Hellinger metric for ~x and
~x1

2. Using partial sums of AJ for approximation of A, derive a satisfy-
ing error bound using the Hellinger distance between the truncated
posterior measure and true posterior measure.
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